翻訳と辞書
Words near each other
・ Hippogriff
・ Hippohyus
・ Hippoidea
・ Hippolais
・ Hippo (Greek woman)
・ Hippo (philosopher)
・ Hippo APC
・ Hippo Campus
・ Hippo CMS
・ Hippo eats dwarf
・ Hippo Family Club
・ Hippo grass
・ Hippo Island
・ Hippo Press
・ Hippo Regius
Hippo signaling pathway
・ Hippo Valley Estate
・ Hippo Vaughn
・ Hippo water roller
・ Hippo, Kentucky
・ Hippobosca
・ Hippobosca equina
・ Hippobosca longipennis
・ Hippoboscidae
・ Hippoboscinae
・ Hippoboscoidea
・ Hippobotus
・ Hippobroma
・ Hippobroma longiflora
・ Hippobromus pauciflorus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hippo signaling pathway : ウィキペディア英語版
Hippo signaling pathway
The Hippo signaling pathway, also known as the Salvador/Warts/Hippo (SWH) pathway, controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a “hippopotamus”-like phenotype.
A fundamental question in developmental biology is how an organ knows to stop growing after reaching a particular size. Organ growth relies on several processes occurring at the cellular level, including cell division and programmed cell death (or apoptosis). The Hippo signaling pathway is involved in restraining cell proliferation and promoting apoptosis. As many cancers are marked by unchecked cell division, this signaling pathway has become increasingly significant in the study of human cancer.
The Hippo signaling pathway appears to be highly conserved. While most of the Hippo pathway components were identified in the fruit fly (''Drosophila melanogaster'') using mosaic genetic screens, orthologs to these components (genes that function analogously in different species) have subsequently been found in mammals. Thus, the delineation of the pathway in ''Drosophila'' has helped to identify many genes that function as oncogenes or tumor suppressors in mammals.
== Mechanism ==
The Hippo pathway consists of a core kinase cascade in which Hpo phosphorylates the protein kinase Warts (Wts). Hpo (MST1/2 in mammals) is a member of the Ste-20 family of protein kinases. This highly conserved group of serine/threonine kinases regulates several cellular processes, including cell proliferation, apoptosis, and various stress responses. Once phosphorylated, Wts (LATS1/2 in mammals) becomes active. Wts is a nuclear DBF-2-related kinase. These kinases are known regulators of cell cycle progression, growth, and development. Two proteins are known to facilitate the activation of Wts: Salvador (Sav) and Mob as tumor suppressor (Mats). Sav (WW45 in mammals) is a WW domain-containing protein, meaning that this protein contains a sequence of amino acids in which a tryptophan and an invariant proline are highly conserved. Hpo can bind to and phosphorylate Sav, which may function as a scaffold protein because this Hpo-Sav interaction promotes phosphorylation of Wts. Hpo can also phosphorylate and activate Mats (MOBKL1A/B in mammals), which allows Mats to associate with and strengthen the kinase activity of Wts.
Activated Wts can then go on to phosphorylate and inactivate the transcriptional coactivator Yorkie (Yki). Yki is unable to bind DNA by itself. In its active state, Yki binds to the transcription factor Scalloped (Sd), and the Yki-Sd complex becomes localized to the nucleus. This allows for the expression of several genes that promote organ growth, such as ''cyclin E'', which promotes cell cycle progression, and ''diap1'' (''Drosophila'' inhibitor of apopotosis protein-1), which, as its name suggests, prevents apoptosis. Yki also activates expression of the ''bantam'' microRNA, a positive growth regulator that specifically affects cell number. Thus, the inactivation of Yki by Wts inhibits growth through the transcriptional repression of these pro-growth regulators. By phosphorylating Yki at serine 168, Wts promotes the association of Yki with 14-3-3 proteins, which help to anchor Yki in the cytoplasm and prevent its transport to the nucleus. In mammals, the two Yki orthologs are Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). When activated, YAP and TAZ can bind to several transcription factors including p73, Runx2 and several TEADs. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human epithelial cells in vivo and in vitro.
The upstream regulators of the core Hpo/Wts kinase cascade include the transmembrane protein Fat and several membrane-associated proteins. As an atypical cadherin, Fat (FAT1-4 in mammals) may function as a receptor, though an extracellular ligand has not been positively identified. While Fat is known to bind to another atypical cadherin, Dachsous (Ds), during tissue patterning, it is unclear what role Ds has in regulating tissue growth. Nevertheless, Fat is recognized as an upstream regulator of the Hpo pathway. Fat activates Hpo through the apical protein Expanded (Ex; FRMD6/Willin in mammals). Ex interacts with two other apically-localized proteins, Kibra (KIBRA in mammals) and Merlin (Mer; NF2 in mammals), to form the Kibra-Ex-Mer (KEM) complex. Both Ex and Mer are FERM domain-containing proteins, while Kibra, like Sav, is a WW domain-containing protein. The KEM complex physically interacts with the Hpo kinase cascade, thereby localizing the core kinase cacade to the plasma membrane for activation. Fat may also regulate Wts independently of Ex/Hpo, through the inhibition of the unconventional myosin Dachs. Normally, Dachs can bind to and promote the degradation of Wts.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hippo signaling pathway」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.